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Abstract

The value of information is examined in a risk-sharing environment with unawareness and
complete markets. Information and awareness are symmetric among agents, who have a clear
understanding of their actions and deterministic payoffs. We show with examples that public
information can make some agents strictly better off at the expense of others, contrasting the
standard results of Hirshleifer [1971] and Schlee [2001] that the value of public information
is negative for all when risk averse agents are fully insured. We identify the source of this
problem to be that, as awareness varies across states, it creates an “awareness signal” that the
agents misunderstand and treat asymmetrically. As a result, risk-sharing opportunities that are
available when this signal is not used, vanish when it is used. Depending on the allocation of
endowments, this asymmetry makes some agents strictly better off and others strictly worse off.
We identify a property, Conditional Independence, which we show is sufficient for the value of
public information to be negative for all.

JEL-Classifications: C70, D53, D80, D82.
Keywords: unawareness, value of information, risk-sharing, uncertainty, knowledge, bounded

perception, awareness.

1 Introduction

In standard neoclassical economies with complete markets, where symmetrically informed agents
trade state-contingent claims under uncertainty, Hirshleifer [1971] shows that providing public
information may hurt all market participants, as it reduces the opportunities for risk-sharing.
To provide an example, consider an economy with two risk averse agents and two, equally likely,
states of the world, ah (the level of the assets of a specific company is high) and al (the level
of the assets is low). The aggregate endowment for the economy is 1, constant across the two
states. Agent 1 has all of the endowment at ah and nothing at al. If the agents do not receive
any information before agreeing to trade, the unique equilibrium allocation is to consume 1/2
in both states. Suppose now that public information is available, enabling the agents to know
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Herakles Polemarchakis, David Rahman, Marzena Rostek, Fernando Vega-Redondo, Michael Vlassopoulos, Marek
Weretka, Xiaojian Zhao, two referees and seminar participants at the European University Institute, the University
of Southampton, the Summer in Birmingham workshop and the International Workshop on Unawareness, University
of Queensland.
†Department of Economics, School of Social Sciences, University of Southampton, Southampton, UK,
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which state has occurred. Then there is no trade, as each agent consumes her endowment at each
state. From an ex ante perspective, both agents are better off from not having this information,
as they bear more risk from consuming 0 in one state and 1 in the other.

Schlee [2001] generalises this result, showing that the value of public information is weakly
negative for all risk averse agents, in environments where there is no aggregate uncertainty, or
there are risk neutral agents who fully insure the risk averse ones (e.g. competitive insurance
markets with risk neutral insurers).1 This means that market participants would unanimously
reject the release of public information.

In practice, however, the debate on whether it is beneficial to disclose market related infor-
mation is far from being settled.2 For instance, private banks tend not to report the market
value of all of their assets, whereas central banks are not required to reveal the identities of the
institutions that use their emergency lending facilities. On the other hand, there is a series of
“mark-to-market” legislations that aim to disclose information, adopted in 1994 (FAS 115) and
2007 (FAS 157) in the US.

In this paper we show that with unawareness, the release of public information could ben-
efit some market participants, at the expense of others, even in a restrictive environment with
complete markets, no aggregate uncertainty, common priors and risk aversion. Such an observa-
tion could explain why some are in favour of disclosing information, whereas others are not. It
could also rationalize (as we show in Section 3) why some very sophisticated (and more aware)
market participants (e.g. hedge fund managers) may even want to disclose some of their private
information and awareness to their unsophisticated trading partners in order to take advantage
of them.

The market participants in the present model understand perfectly their available actions
(e.g. buy and sell orders) and the payoff relevant states (e.g. level of assets of a company).
Moreover, they update using Bayes’ rule and maximize their expected utility. However, they
may be unaware of some contingencies which, although payoff irrelevant, could be correlated
with contingencies that are payoff relevant. For example, a crisis in the housing market may
influence the level of assets of several companies. Being unaware of a potential housing crisis
means that the agent does not know whether it will occur and she does not know that she does
not know. In other words, she completely misses this contingency and its effect on the payoff
relevant states, viewing tomorrow’s uncertainty in a simpler, more naive way.

To show that with unawareness the value of information may be positive for some, consider
the previous example and suppose that additionally to the level of assets contingency, there is
also the contingency of whether there is a housing market crisis. Moreover, suppose that the
agents become aware of the second contingency if and only if the housing market crisis occurs
and as a result the level of assets is low. At ah, both agents do not know whether ah or al has
occurred because they have no information about the level of assets. Agent 1 agrees to give half
of her endowment to agent 2 if ah is revealed, with the understanding that agent 2 will do the
same if al is revealed. As a result, both agents consume 1/2 at ah. At al, both agents become
aware of both contingencies. They can now reason that ah has not occurred, as it describes that
they would be unaware of the housing crisis contingency, which is wrong. This implies that there
is no trade and agent 2 consumes 1, whereas agent 1 consumes 0. If we compare this allocation
with the full information allocation, where both consume their endowments, more information
makes agent 1 strictly better off and agent 2 strictly worse off.

In Section 3 we provide numerical examples which demonstrate in more detail how more
information can benefit some agents, at the expense of others. Moreover, we show an example
with asymmetric awareness, where a more aware agent is strictly better off by revealing some
of her awareness and information to the other agent, in order to manipulate her.

1Schlee [2001] also identifies a third condition that we do not examine in this paper, namely that all agents are
risk averse and the economy has a representative agent.

2See Andolfatto et al. [2014] and McTeer [2009] for a discussion.
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The common element in all these examples is that the value of information depends not on
the level of awareness (how many contingencies one is aware of) but on its variance. If awareness
varies across states, it creates an awareness signal that transmits information. However, the
agent comprehends this signal only partially. For example, if she is aware of the housing market
crisis contingency, she can easily exclude all states describing that she is unaware of it. On the
other hand, if she is unaware of the housing market crisis contingency, then she cannot exclude
the states which describe that she would be aware of it.

However, it is not necessary that there is perfect correlation between the level of awareness
and the level of the assets, as in the previous example. We find that if there is some correlation
between her level of awareness and the level of the assets which determines the endowment (e.g.
she is more likely to become aware of the new contingency if the crisis occurs than if it does
not), then her varying awareness provides information that is payoff relevant. The effect of
the asymmetric use of the awareness signal is that risk-sharing opportunities that are mutually
beneficial when the awareness signal is not used and information is scarce, vanish when the
signal is used.

One way of avoiding this misuse of the awareness signal is to require that the agent’s interim
beliefs, which are the prior beliefs conditioned on her received information, do not change when
we also condition on her awareness signal. We call this property Conditional Independence. Our
main result is that Conditional Independence is sufficient for the value of public information to
be negative for all fully insured risk averse agents, just like in the standard model. Moreover,
we show that Conditional Independence is satisfied in the model of Heifetz et al. [2013], which
is the probabilistic version of Heifetz et al. [2006]. Hence, the examples cited in Section 3 are
excluded by these models.

Finally, although unawareness is a mistake of reasoning which leads agents to commit errors,
it does not allow for any irrational behavior. For instance, we show that, as in the complete
markets model of Green [1981], introducing public information to an uninformative information
structure will lead to at least one agent being weakly worse off. This is a consequence of the
First Welfare Theorem and it is still true with unawareness. This is not the case with other
models that allow for arbitrary wrong beliefs (not necessarily due to unawareness), like Morris
[1992] and Morris and Shin [1997].

1.1 Related literature

Using partitional structures, Green [1981] shows that if all agents are risk averse, when compared
with no information, more information can never lead to an ex ante Pareto improvement. He
also shows that the equilibrium outcomes of two information structures, one more informative
than the other, cannot, in general, be ex ante Pareto ranked. Schlee [2001] proves that this is
possible in the more restrictive environment of fully insured risk averse agents.

Campbell [2004] establishes that Hirshleifer’s inverse relationship between better public in-
formation and welfare is fully general in the more general solution concept of implementable
allocations. The value of information has also been studied in the setting of incomplete markets,
where Green [1981], Hakansson et al. [1982] and Eckwert and Zilcha [2003] demonstrate that,
in some cases, more information is beneficial. Gottardi and Rahi [2014] show that, generically,
there exists a change in information that makes everyone better off and another change that
makes everyone worse off.

Geanakoplos [1989] studies the value of information in a setting with boundedly rational
agents, using non-partitional information structures on a single state space. Part of his moti-
vation is unawareness, however Dekel et al. [1998] argue that unawareness cannot be modelled
within a standard state space. Models of unawareness are provided, among others, by Fagin
and Halpern [1988], Modica and Rustichini [1994, 1999], Halpern [2001], Li [2009], Halpern and
Rêgo [2008], Heifetz et al. [2008] and Galanis [2011]. In this paper we use the multiple state
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space model of Galanis [2013], which is based on Heifetz et al. [2006]. Karni and Vierø [2013]
provide a theory of how agents update their beliefs when their awareness grows and their state
space expands.

In single-agent environments with unawareness, Galanis [2015] shows that the value of in-
formation may be negative, which is opposite to what is true when there is no unawareness, as
shown in Blackwell [1951] and Laffont [1989]. He then identifies conditions on the awareness
structure which are sufficient for the value to be positive. These conditions are weaker than the
sufficient conditions in the current setting, for public information to have a negative value. In
a similar setting, but where the value of information is always positive, Quiggin [2015] shows
that the sum of the gains in expected utility, going from no information to some information
and from minimal awareness to full awareness, is always constant. Li et al. [2014] examine the
role of information disclosure in a model where a monopolist sells a product with a potentially
harmful characteristic, of which some consumers are unaware.

The paper proceeds as follows. Section 2 presents the model and shows that Conditional
Independence is sufficient for the value of public information to be negative for all agents. In
Section 3 we provide examples, one with two risk averse agents and another where there is also
a third risk neutral agent (e.g. insurer), which show that the value of public information may
be positive for some agents and negative for others, if Conditional Independence is violated. We
also show that an agent may become strictly better off by revealing some of her information
and awareness to the other agent, in order to manipulate her. All proofs are contained in the
Appendix.

2 The Model

2.1 Preliminaries

We present a reduced version of the model of Galanis [2013], which is based on Heifetz et al.
[2006] and employs possibility correspondences P i but not knowledge or awareness operators.
Differences in awareness are modeled by having several disjoint state spaces. Let S = {Sk}k∈K
be the collection of all these state spaces. For simplicity, we assume that S is finite and that
each S ∈ S has finitely many elements, which we call states.

Figure 1 depicts an example, consisting of 4 state spaces. State space S0 is the least ex-
pressive, containing only one state, denoted ∅. State space S1 contains two states, describing
whether the answer to question or dimension p is yes or no, whereas S2 describes whether the
answer to q is yes or no. State space S3 is the most expressive, describing the answer to both p
and q. If an agent is aware of S1 then she is also aware of S0, but not necessarily of S2 and S3.

We assume that S is a lattice with partial order �, so that for any two elements S, S′ ∈ S,
both their supremum S ∨ S′ and their infimum S ∧ S′ belong to S. In Figure 1, we have
S3 = S1 ∨ S2 and S0 = S1 ∧ S2. If S � S′, we say that S′ is more expressive than S. Because
S is finite, there is a top state space, which we call the full state space S∗, and a bottom state
space, which we call the payoff relevant state space S0. Hence, S0 � S � S∗, for all S ∈ S. In
the example, we have S0 ≺ S1, S2, S3 and S3 � S0, S1, S2 but S1 is not comparable with S2,
hence S1 � S2 and S2 � S1.

If S � S′, we require that each state s′ ∈ S′ can be mapped to its “restricted” image in
the less expressive S. Formally, we require that there is a surjective projection rS

′
S : S′ → S.

Projections are required to commute: if S � S′ � S′′, then rS
′′

S = rS
′

S ◦ rS
′′

S′ . We denote the

projection of set E′ ⊆ S′ to the less expressive S by E′S =
⋃{rS′S (s′) ∈ S : s′ ∈ E′}. We denote

the enlargement of E′ ⊆ S′ to the more expressive S′′ by E′S
′′

=
⋃{s′′ ∈ S′′ : rS

′′
S′ (s′′) ∈ E′}.

Let E↑ =
⋃{E′S′′ : S′′ � S′} be the enlargements of E′ to all state spaces which are at least as

expressive as S′.
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S0

S1 S2

S3

;

pyqy pyqn pnqy pnqn

py pn qy qn

Figure 1: Collection of state spaces

In Figure 1, the thin arrows show the projections. State pyqy of S3 projects to state py of
S1 and to state qy of S2. States py and qy then project to state ∅ of S0. The projection of
E = {pyqy, pnqy} to S1 is ES1

= {py, pn} = S1. However, the enlargement of ES1
to S3 is

(ES1)S3 = S3.

2.2 Information and awareness

Agent i’s information structure is represented by a possibility correspondence P i : Σ→ 2Σ \ ∅,
where Σ =

⋃
S∈S S is the set of all states. The interpretation is that i considers states in P i(s)

to be possible at s ∈ S. We assume that P i has the following properties.

(0) Confinedness: If s ∈ S then P i(s) ⊆ S′ for some S′ � S.

(1) Generalized Reflexivity: s ∈ (P i(s))↑ for every s ∈ Σ.

(2) Stationarity: s′ ∈ P i(s) implies P i(s′) = P i(s).

(3) Projections Preserve Ignorance: If s ∈ S′ and S � S′ then (P i(s))↑ ⊆ (P i(sS))↑.

(4) Projections Preserve Awareness: If s ∈ S′, s ∈ P i(s) and S � S′ then sS ∈ P i(sS).

Detailed discussion of these properties is provided in Heifetz et al. [2006] and Galanis [2013].
In Figure 1, the thick arrows specify what is the agent’s awareness and state space at each full
state. For example, state pyqy specifies that the agent is aware of p but not q, hence her state
space is S1. All other states in S∗ specify that she is aware of both p and q and her state space is
S∗. The solid lines specify the agent’s information at each state. In particular, we assume that
the agent receives a perfectly correlated signal about p, meaning that if she is aware of p, she is
informed whether the answer is yes or no. For instance, at pnqy she is aware of state space S3

(and therefore all less expressive state spaces) and she considers pnqy and pnqn to be possible
because she learns the answer to p is no. Hence, P i(pnqy) = {pnqy, pnqn}. The thick arrow
pointing from pyqy to py indicates that if pyqy occurs, then the agent’s state space is S1, hence
she is unaware of S3 and S2. Because she is informed about p, she knows that py is true and
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P i(pyqy) = {p}. State pyqy is not included in any solid line because the agent never considers
it possible. When it occurs, she is unaware of it. When she is aware of it (by being aware of
S3), she understands that pyqy could not have happened, because it specifies that her awareness
would be lower.

In the standard model without unawareness, we say that information structure P 1 is more
informative than P 2 if for all states s ∈ S (where S is the unique state space), P 1(s) ⊆ P 2(s).
This property is equivalent to saying that the partition generated by P 1 is finer than that
generated by P 2. In a model with unawareness, however, it may be that P 1(s) and P 2(s) do
not belong to the same state space. In order to compare them, we enlarge both sets to a state
space S that is more expressive than both P 1(s) and P 2(s), for all s ∈ S.

Definition 1. P 2 is more informative than P 1 given S ∈ S if P 2(s)S ⊆ P 1(s)S for all s ∈ S.3

Hence, the definition of “more information” is parametrized by state space S. Suppose that
P 1 is the information structure depicted in Figure 1 and define P 2 as follows. For each s ∈ S3,
P 2(s) = sS1

, hence S3 specifies that agent 2 is always aware of S1 and she is perfectly informed
about what the state is. For example, P 2(pyqy) = {py}. For each s ∈ S0∪S1∪S2, P 2(s) = {s}.
Then, P 1 is more informative than P 2 given S3 but P 2 is not more informative than P 1 given
S3, because P 1(pyqn)S3 ( P 2(pyqn)S3 . Given S1, however, P 1 is identical to P 2.

An event E is a subset of some state space S ∈ S. Hence, {pyqy, pyqn} is an event but
{py, pnqy} is not. Define Si : Σ → S such that for any s ∈ Σ, Si(s) = S if P i(s) ⊆ S ∈ S.
Hence, Si(s) is the most expressive state space that the agent is aware of at s and we therefore
say that Si(s) is i’s state space at s.

Definition 2. Agent i is aware of event E ⊆ S′ at s ∈ S if S′ � Si(s). If Si(s) � Sj(s), then
agent i is more aware than agent j at s.

In Figure 1, S1(pyqy) = S1 so she is aware of event {py} but not {pyqy, pyqn}. She is aware
of all events at pyqn because S1(pyqn) = S3. Moreover, agent 1 is at least as aware as agent 2
at all states s ∈ Σ.

2.3 Priors and updating

Let π0 be a prior on the full state space S∗. We assume that if the agent’s state space is S � S∗,
her prior is just the marginal of π0 on S. Hence, being less aware does not imply a different
prior. In Figure 1, let π0 = (0.2, 0.2, 0.4, 0.2) be the prior on S∗ = S3. At pyqy, the agent’s
state space is S1, as shown by the arrow. Her prior on S1 is the marginal of π0 on S1, which is
(0.4, 0.6). Formally, for each S ∈ S, define πS : 2S \ ∅ → [0, 1], such that, for each event E ⊆ S,
πS(E) = π0(ES

∗
). We call π = {πS}S∈S a generalized prior.

Posterior beliefs are formulated using Bayes’ rule. If i is aware of event E at state s and
πS(P i(s)) > 0, where S = Si(s), then her posterior belief about E � S at s is πS(ES |P i(s)) =
πS(ES∩P i(s))
πS(P i(s)) . In Figure 1, the agent’s information at pnqy is P i(pnqy) = {pnqy, pnqn}. Her

posterior belief about E = {qy} at pnqy is πS3
(ES3 |P i(pnqy)) =

πS3
({pnqy})

πS3
({pnqy,pnqn}) = 0.67.

2.4 Conditional Independence

Given state s ∈ S ∈ S, let
E iS(s) =

{
s1 ∈ S : Si(s) = Si(s1)

}
be the event in S describing that the agent has the same awareness as in s. Operator E iS partitions
state space S, generating an awareness signal, expressed in S, that provides information. We
call E i = {E iS}S∈S the awareness signal of P i. At s, the agent’s state space is Si(s). Properties

3To ease the notation we write P 1(s)S instead of (P 1(s))S .
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0-4 of Section 2.2 imply that the agent always knows what her awareness is. This means that she
considers impossible any state in Si(s) that describes that her awareness would be strictly lower
than Si(s). These states are precisely those not in E iSi(s)(sSi(s)), where sSi(s) is the projection

of s to her state space. In other words, it is as if the agent is informed that E iSi(s)(sSi(s)) is true

and incorporates it in her information, hence P i(s) ⊆ E iSi(s)(sSi(s)) is always true. However, if

S � S′ � Si(s), then E iS′(sS′) as a signal is more informative and the agent is unaware of it.
In Figure 1, E1

S3
(pyqy) = {pyqy}, whereas if s ∈ S3 is different from pyqy we have E1

S3
(s) =

{pnqy, pyqn, pnqn}. For all states s ∈ S3 that are different from pyqy, the agent is aware of S3.
As a result, she completely understands E1

S3
, which is already incorporated in her information,

in the sense that P 1(s) ⊆ E1
S3

(s) for all s ∈ S \ pyqy. At pyqy, however, she is unaware of S3,
which means that she cannot understand E1

S3
. This means that she cannot reason as follows:

“because I am unaware of S3, it must be that pyqy has occurred”. This reasoning, expressed in
state space S1, implies that py has occurred. Does the agent lose in terms of her information by
not being able to reason above her awareness? In this particular case no, because she already
knows that py has occurred as she receives a signal, but in general this is not true, as we show
in Section 3.

We formalise this property below but express it in terms of beliefs, which matter for actions,
instead of information. Conditional Independence given state space S specifies that interim
beliefs would be the same even if the agent could use her awareness signal, expressed in S. In
particular, it specifies that interim beliefs at s ∈ S, which are the prior beliefs conditioned on
P i(s), do not change when we also condition on E iS(s), the awareness signal of P i, expressed in
S.

Definition 3. (P i, π) satisfies Conditional Independence given S ∈ S if, for any s ∈ S with
πS(s) > 0, for any E ⊆ Si(s),

πSi(s)(E|P i(s)) = πS(ES |E iS(s) ∩ P i(s)S).

In Figure 1, let E = {py} and note that the agent’s interim beliefs about E at pyqy ∈ S3 are
πS1(E|P 1(pyqy)) = 1, because she knows whether p is true or not. The awareness signal of P 1,
expressed in S3, specifies that E1

S3
(pyqy) = {pyqy}, hence πS3

(ES3 |E1
S3

(pyqy) ∩ P 1(pyqy)S3) =
1. For all other s ∈ S3 \ pyqy, we have E1

S3
(s) ⊇ P 1(s), hence (P 1, π) satisfies Conditional

Independence given S3. In Section 3, we provide examples where Conditional Independence is
violated and, as a result, the value of public information is positive for some agents.

As we show below, Conditional Independence is sufficient for public information to have
negative value for all, as in the standard model. To provide a connection with the unawareness
literature, consider the following property of Heifetz et al. [2013] (Section 2.8, Property 2),
which extends the unawareness model of Heifetz et al. [2006] by introducing probabilistic beliefs.
Translated in the current setting, it is the following.4

Definition 4. (P i, π) satisfies Projections Preserve Posteriors if, for all s ∈ Σ, if S′′ � S′ � S,
s ∈ S′′ and Si(s) = S′, then for any event E ⊆ S, πS(E|P i(sS)) = πS′(E

S′ |P i(s)).5

Projections Preserve Posteriors requires that if both s and its projection to S, sS , describe
that the agent is aware of event E, then both s and sS specify the same posterior beliefs about
E. This property is a strengthening of the property Projections Preserve Knowledge, assumed
in Heifetz et al. [2006] but not in Galanis [2013]. The next proposition shows that it is stronger
than Conditional Independence.

Proposition 1. If (P i, π) satisfies Projections Preserve Posteriors, then it satisfies Conditional
Independence given S, for each S ∈ S.

4The name Projections Preserve Posteriors is not used by Heifetz et al. [2013].
5Note that Projections Preserve Awareness implies that Si(sS) = S.
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In conjunction with Theorem 1, stated in Section 2.6, Proposition 1 says that the value of
public information is always negative for all agents in the model of Heifetz et al. [2013].

Finally, note that Conditional Independence does not imply Projections Preserve Posteriors.
For a counterexample, suppose S = {S, S∗}, each state space containing two states, where
s∗k ∈ S∗ projects to sk ∈ S, i = 1, 2. Moreover, P i(s∗k) = {s∗k}, P i(sk) = S, i = 1, 2.6 With a
uniform prior on S∗, Conditional Independence given both S∗ and S is satisfied, because the
agent’s awareness is constant. However, Projections Preserve Posteriors is violated because at
s1 she assigns probability 1/2 to event E = {s1}, but at s∗1 she assigns probability 1 to ES

∗
.

2.5 The economy

Consider an exchange economy with I agents and a single physical consumption good. En-
dowments are defined on the bottom, payoff relevant, state space S0. Agent i’s endowment at
s ∈ S0 is ωi(s). The aggregate endowment of the economy at state s ∈ S0 is

∑
i∈I
ωi(s) = ω(s).

For any other state space S ∈ S, i’s endowment at s ∈ S is ωi(s) = ωi(sS0
), where sS0

∈ S0 is
the projection of s to state space S0. Hence, all other state spaces are payoff irrelevant. There
is no aggregate uncertainty if ω(s) = ω(s′) for all s, s′ ∈ S0, so that the aggregate endowment is
constant across all states in S0. Let ωi = {ωi(s)}s∈Σ be the vector specifying the endowments
for agent i in all possible states. Let {ωi}i∈I be the vector specifying the endowments for all
agents. Each agent has a differentiable, concave, strictly increasing von Neumann-Morgestern
utility function ui : R+ → R. Let {ui}i∈I be the vector of utilities for all agents.

There are three periods, 0 and 1 and 2. Period 0 is the ex ante period, before receiving any
signal. In period 1, the agents receive their awareness and information, update using Bayes’
rule and trade conditioning on the payoff relevant states s0 ∈ S0. In period 2, the true payoff
relevant state is revealed, enabling the execution of the agreed trades.

Information and awareness are common among agents, so that P i = P j = P for all i, j ∈ I.
An economy is denoted by a tuple (S, P, {ωi}i∈I , {ui}i∈I , π), where P describes the agents’
(common) information and awareness, {ωi}i∈I is the endowment vector, {ui}i∈I is the utility
vector, π is the common generalized prior and S ∈ S is the state space that is used to describe
the uncertainty in period 1. That is, an agent whose state space is S in period 0 thinks that
in period 1 the economy is described by tuple (S, P, {ωi}i∈I , {ui}i∈I , π). When s ∈ S occurs,
the agents’ state space is S(s) and the public information is given by P (s). For simplicity, we
assume that πS(s) > 0 for all s ∈ S ∈ S.

Given a state s ∈ S ∈ S and a possibility correspondence P , let cis(s1) ∈ R+ denote agent
i’s consumption at s1 ∈ P (s), if the public information is P (s).7 Let cis = {cis(s1)}s1∈P (s) be a
vector of consumptions for agent i for all states considered possible given s ∈ S. Vector {cis}i∈I
is feasible if, for each s1 ∈ P (s),

∑
i∈I
cis(s1) ≤ ∑

i∈I
ωi(s1), where ωi(s1) = ωi(s1S0

) is i’s endowment

at s1.
Let ciS,P = {cis}s∈S summarize i’s consumption for all states in S given P and let cS,P =

{ciS,P }i∈I summarize the consumption of all agents. Vector cS,P is feasible if {cis}i∈I is feasible
for each s ∈ S. It is measurable if the following two conditions hold for all i ∈ I. First, for

6Although it is not necessary to describe specific dimensions for the two state spaces, suppose that s1 = {py},
s2 = {pn}, s∗1 = {pyqy} and s∗2 = {pnqn}. The information structure can then be derived by specifying that at
s∗k ∈ S∗, the agent learns the answer to q and uses the theorem “qy if and only py” to deduce the answer to p and
learn the true state. Because state space S does not contain dimension q and therefore misses this connection, or
theorem, it describes that the agent has no information about p. Note that to express this theorem, the full state
space is not the Cartesian product of the answers of all possible questions. Galanis [2013] studies these theorems and
their impact on interactive knowledge, in an environment with unawareness.

7Note that we do not define consumption for states which do not belong to P (s), because they are considered
impossible by all agents, when the public information is P (s).
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all s ∈ S, for all s1, s2 ∈ P (s) such that s1S0
= s2S0

, we have cis(s1) = cis(s2). Second, for all
s, s′ ∈ S such that P (s) = P (s′), we have cis(s1) = cis′(s1) for all s1 ∈ P (s) = P (s′). In other
words, cS,P is measurable if it is measurable with respect to the payoff relevant state space S0

and with respect to any two signals that are identical.
Given public information P (s), the price of the state-contingent good at state s1 ∈ P (s)

is denoted by ps(s1). Let ps = {ps(s1)}s1∈P (s) be a vector of prices for all states considered
possible at s and let pS,P = {ps}s∈S summarize prices for all states in S given P . Note that,
unlike in the standard model, allocation cS,P and prices pS,P are defined with reference to both
a state space S and a possibility correspondence P . The reason is that P determines the agents’
awareness and therefore their state space S(s), when s ∈ S occurs. Consumption and prices are
then defined for all states in P (s). Vector pS,P is measurable if for all s, s′ ∈ S, if P (s) = P (s′)
then ps = ps′ .

Vector cis is affordable for i given price vector ps if
∑

s1∈P (s)

cis(s1)ps(s1) ≤ ∑
s1∈P (s)

ωi(s1)ps(s1).

We say that {cis}i∈I is affordable given ps if, for each i ∈ I, cis is affordable for i given ps.
Given state space S and information structure P , we evaluate allocation ciS,P from an ex

ante perspective. If state s ∈ S occurs, the agents’ state space is S(s) and i’s consumption
under ciS,P is cis(sS(s)). Her ex ante expected utility is

∑
s∈S

πS(s)ui(cis(sS(s))).

A competitive equilibrium in a risk-sharing environment with symmetric awareness and
information is defined as follows.

Definition 5. Given an economy (S, P, {ωi}i∈I , {ui}i∈I , π), a competitive equilibrium consists
of an allocation cS,P and a price vector pS,P such that:

• Agent optimization: For all i ∈ I, for all s ∈ S, for any vector of consumptions {dis}i∈I
which is affordable given ps and measurable, we have∑

s1∈P (s)

πS(s)(s1|P (s))ui(cis(s1)) ≥
∑

s1∈P (s)

πS(s)(s1|P (s))ui(dis(s1)).

• Measurability: cS,P and pS,P are measurable.

• Market clearing: For each s ∈ S, for each s1 ∈ P (s),
∑
i∈I
cis(s1) =

∑
i∈I
ωi(s1).

Note that a competitive equilibrium is defined given a state space S. Moreover, given a state
s ∈ S, the agents have received their information and awareness before making their decisions
about their trades. Hence, given s we are in a standard case of an equilibrium under uncertainty,
where the state space is P (s). The added condition of measurability comes from the fact that we
represent information using possibility correspondences, not signals. Hence, unawareness does
not add any complications to the notion of equilibrium.

2.6 Main result

Before providing sufficient conditions for information not to be valuable in a risk-sharing en-
vironment, we confirm a result by Green [1981], showing that from an initial position of no
information, any public information will result in at least one agent being weakly worse off ex
ante. This is a consequence of the First Welfare Theorem. Moreover, if that agent is risk averse
and her consumption is not constant conditional on each payoff relevant state s0 ∈ S0, then
she will be strictly worse off ex ante. This result shows that unawareness does not imply that
“anything goes”, as in the case where agents are irrational in an arbitrary way.8

8For example, Morris [1992] and Morris and Shin [1997] allow agents to misunderstand their signals in an arbitrary
(and unmodelled) way, hence being less restrictive in terms of behavior, when compared to the present model. As a
result, Proposition 2 is not true in their model.
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We say that P is uninformative given state space S if P (s) = P (s′), for all s, s′ ∈ S. This
condition implies that awareness is constant for all states in S, hence the awareness signal is
uninformative as well. Any possibility correspondence P ′ is more informative than an uninfor-
mative P .

Recall that in economy (S, P, {ωi}i∈I , {ui}i∈I , π) all agents have the same information, given
by possibility correspondence P . We compare how agents evaluate ex ante their consumption
from the equilibrium allocation in economies (S, P 1, {ωi}i∈I , {ui}i∈I , π), where P 1 is uninfor-
mative given S, and (S, P 2, {ωi}i∈I , {ui}i∈I , π). We show that at least one agent will be weakly
worse off in economy (S, P 2, {ωi}i∈I , {ui}i∈I , π) and, if she is strictly risk averse and her con-
sumption is not constant across all states, strictly worse off.

Proposition 2. Consider a competitive equilibrium allocation cS,P 1 of economy (S, P 1, {ωi}i∈I , {ui}i∈I , π),
where P 1 is uninformative given S, and a competitive equilibrium allocation dS,P 2 of economy
(S, P 2, {ωi}i∈I , {ui}i∈I , π). Then, for some i ∈ I, i’s attained level of ex ante expected utility
must be weakly lower under dS,P 2 than under cS,P 1 . Moreover, if ui is strictly concave and
i’s consumption under dS,P 2 is not constant conditional on each payoff relevant state, then i’s
attained level of ex ante expected utility must be strictly lower.

As Green [1981] points out, we cannot generalize this proposition by only requiring that P 2

is more informative than (a not necessarily uninformative) P 1. The reason is that, although
each cell of P 1 is partitioned by cells of the finer P 2, allowing us to apply the proposition on
each cell separately, the weakly worse off agent may not be the same across all cells. Hence,
taking the expectation with respect to the whole state space may not identify an agent who is
weakly worse off.

Schlee [2001] shows that more public information will make everyone weakly worse off in the
more restrictive environment of fully insured risk averse agents, which is implied by two separate
conditions.9 First, there is no aggregate uncertainty. Second, there are risk neutral agents, rich
enough to fully insure the risk averse agents.10

As is shown with examples in Section 3, both these conditions are no longer sufficient with
unawareness. The following theorem shows that we need to additionally assume Conditional
Independence for both information structures.

Theorem 1. Suppose that P 2 is more informative than P 1. Moreover, both (P 1, π) and (P 2, π)
satisfy Conditional Independence given S. Consider a competitive equilibrium allocation cS,P 1 of
economy (S, P 1, {ωi}i∈I , {ui}i∈I , π) and a competitive equilibrium allocation dS,P 2 of economy
(S, P 2, {ωi}i∈I , {ui}i∈I , π). Then, all agents are weakly worse off under dS,P 2 if either of the
following is true:

1. All agents are risk averse and there is no aggregate uncertainty, or,

2. There are enough risk neutral agents who can fully insure the risk averse agents.

Conditions 1 and 2 ensure that the risk averse agents are fully insured in all equilibrium allo-
cations. It is a standard result that full insurance and risk aversion imply that there is a unique
equilibrium allocation, specifying that at the interim stage each risk averse agent consumes her
expected endowment.11 Conditional Independence on both information structures then implies
that more information will make everyone weakly worse off. The two counterexamples of Sec-
tion 3 show that we need both P 1 and P 2 to satisfy Conditional Independence for the value of
information to be negative for all.

9Note that Schlee [2001] uses Blackwell’s criterion of “more information”, which is different than the one used
here and in Green [1981]. The relation between the two is shown in Green and Stokey [1978].

10As stated before, Schlee [2001] also identifies a third condition that we do not examine here, namely that all
agents are risk averse and the economy has a representative agent.

11 See Theorem 2 in Schlee [2001]. We provide a sketch of the proof of this result in the next section.
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3 Positive value of public information

We now provide two counterexamples, showing that if Conditional Independence is violated, then
the conditions of Schlee [2001] are no longer sufficient for public information to have negative
value in a risk-sharing environment with unawareness, where a single good is traded. In the first
example there are two risk averse agents and no aggregate uncertainty, whereas in the second
there is aggregate uncertainty and a third, risk neutral, agent who fully insures the first two. In
both cases, we also show that if awareness and information are asymmetric, then it is possible
for an agent to intentionally make some of her awareness and information public, in order to
manipulate the other agents.

Uncertainty about tomorrow is described by giving an answer to the following three questions,
which concern a specific company. Question a, “What is the level of the assets of the company?”,
has three possible answers: high, medium and low. Questions q, “Is there an acquisition?”, and
c, “Is there a housing market crisis?”, have two possible answers, “yes” and “no”.

A full state s∗ specifies an answer to all three questions, providing a complete description of
the world. The full state space S∗ = {s∗1, s∗2, s∗3} consists of states

s∗1 = (ah, qy, cn), s∗2 = (am, qn, cn) and s∗3 = (al, qy, cy).

The full state space describes that the level of assets is low if and only if there is a housing
market crisis. Moreover, the level of assets is medium if and only if there is no acquisition. The
first connection is lost for an agent who is only aware of questions a and q. Her state space is
then S = {s1, s2, s3}, the projection of S∗ to this lower dimensional space. It consists of states

s1 = (ah, qy), s2 = (am, qn) and s3 = (al, qy).

Finally, the payoff relevant state space S0 = {ah, am, al} specifies an answer only to question a.
The common prior on each of the three state spaces is given by (0.3, 0.3, 0.4).

At each full state s∗ ∈ S∗, the agents receive their awareness and information, which is
common, before trading. Hence, they have a common state space and common posteriors.
In this interim stage, there is no difference with a standard general equilibrium model under
uncertainty, where agents trade a state-contingent good after receiving a public signal. In both
subsequent examples, the risk averse agents are fully insured, which implies that the unique
equilibrium allocation is to consume their expected endowment, given their common interim
beliefs.

To see why this is the case, suppose that after receiving their common awareness and in-
formation, the agents consider all states in S to be possible. Suppose that all agents are risk
averse and there is no aggregate uncertainty. Each agent i maximises

∑
s∈S

πS(s)ui(ci(s)), subject

to
∑
s∈S

p(s)ci(s) =
∑
s∈S

p(s)ωi(s). No aggregate uncertainty implies that
∑
i∈I
ωi(s) = ω for each

s ∈ S. Consider a competitive equilibrium ({ci}i∈I , p) and normalise prices so that
∑
s∈S

p(s) = 1.

Risk aversion implies that ci has to be constant across all states. If it is not, then consum-
ing

∑
s∈S

p(s)ci(s) at each state is affordable and weakly better, because
∑
s∈S

p(s)ui(ci(s)) ≤

ui(
∑
s∈S

p(s)ci(s)), from the concavity of ui. Moreover, it clears the markets, because from no

aggregate uncertainty we have
∑
i∈I

∑
s∈S

p(s)ci(s) =
∑
s∈S

p(s)
∑
i∈I
ci(s) = ω

∑
s∈S

p(s) = ω. Hence, in

equilibrium each risk averse agent is fully insured. From the first order conditions of the max-

imization problem, we have that πS(s)ui′(c(s))
πS(s′)ui′(c(s′)) = p(s)

p(s′) for all s, s′ ∈ S. Because ci is constant

across states, ui′(ci(s)) = ui′(ci(s′)) and therefore p(s) = πS(s) for all s ∈ S. In the second
example there are risk neutral agents that fully insure the risk averse agents, hence the same
arguments apply.
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3.1 Trading without aggregate uncertainty

There are two risk averse agents, equipped with the same utility function u(x) = x − x2/4,
where x is the amount of the single good that is being consumed. Their endowments are given
in Table 1. There is no aggregate uncertainty as the endowments always sum to 1.

Level of assets Agent 1 Agent 2

ah 1 0
am 0.5 0.5
al 0 1

Table 1: Endowments

We compare the difference in ex ante expected utility of the two agents in four, successively
more informative, structures. In the first, the agents are only aware of question a and they
never receive any information about its answer. As the arrows show in Figure 2(a), at each
state s∗ ∈ S∗ they are only aware of S0 and they consider all three states (ah, am and al) to be
possible.

Their posterior over S0 is equal to their prior, given by (0.3, 0.3, 0.4). In all equilibria, the
price of the good in the payoff relevant state s ∈ S0 is just the posterior probability of that state.
For each s∗ ∈ S∗, the equilibrium allocation is unique. The two risk averse agents insure fully
and consume their expected endowment. Therefore, c1(s∗) = 0.45 and c2(s∗) = 0.55, for each
s∗ ∈ S∗. Agent 1’s ex ante expected utility is 0.399, whereas 2’s is 0.474. Table 2 summarizes
the consumption and posteriors for each agent.

(ah,qy,cn) (am,qn,cn) (al,qy,cy)

(ah,qy) (am,qn) (al,qy)

ah am al
S0

S

S*

(a) No awareness and no information

(ah,qy,cn) (am,qn,cn) (al,qy,cy)

(ah,qy) (am,qn) (al,qy)

ah am al
S0

S

S*

(b) Awareness signal

Figure 2: Information structures 1 and 2

In the second structure, depicted in Figure 2(b), the agents’ awareness is not constant across
states, but varies. This creates an awareness signal, depicted in each state space by the partition
given by the solid lines. At s∗1 = (ah, qy, cn) and s∗2 = (am, qn, cn), they are aware of questions a
and q and their state space is S. At s∗3 = (al, qy, cy), the housing market crisis occurs and they
additionally become aware of dimension c. Their state space is now S∗ = {s∗1, s∗2, s∗3}. They
never receive any information about the answers of the questions they are aware of.

If the agents are aware of all three questions and their state space is S∗, they can understand
that their awareness signal partitions S∗ into two components, {(ah, qy, cn), (am, qn, cn)} which
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Full state Posteriors Agent 1’s Consumption Agent 2’s Consumption

s∗1 (0.3, 0.3, 0.4) 0.45 0.55
s∗2 (0.3, 0.3, 0.4) 0.45 0.55
s∗3 (0.3, 0.3, 0.4) 0.45 0.55

Table 2: No awareness and no information

Full state Posteriors Agent 1’s Consumption Agent 2’s Consumption

s∗1 (0.3, 0.3, 0.4) 0.45 0.55
s∗2 (0.3, 0.3, 0.4) 0.45 0.55
s∗3 (0, 0, 1) 0 1

Table 3: Awareness signal

specifies awareness of S, and {(al, qy, cy)} which specifies awareness of S∗. This is because
they understand that they become aware of the housing crisis dimension only when it occurs,
therefore deducing that the level of assets is low. However, if they are only aware of a and
q, their state space is S and their awareness signal is completely uninformative, because they
cannot reason symmetrically that as they are unaware of the housing crisis dimension, (al, qy, cy)
has not occurred.

The information processing error that both agents make is to misuse their awareness signal.
This mistake matters for welfare if it is informative, changing their interim beliefs. Conditional
Independence given state space S∗ specifies that interim beliefs do not change when we also
condition on the awareness signal described in S∗. In Figure 2(b) and at state s∗1, the agent’s
interim beliefs are (0.3, 0.3, 0.4). However, if the agent was also informed of the awareness
signal described in S∗, her interim beliefs would be (1/2, 1/2, 0), thus violating Conditional
Independence.

When s∗1 or s∗2 occur, the agents are unaware of c and have no information at all. Their
posteriors are identical to their prior, (0.3, 0.3, 0.4). For both these full states, they have the
same consumption as in the no information case. When s∗3 occurs, they are aware of the full
state space S∗. The awareness signal is informative in S∗, as it distinguishes between the low
awareness states (s∗1, s

∗
2) and the high awareness state s∗3. Hence, they know that s∗3 has occurred

and consume their endowments, 0 and 1, respectively. Table 3 summarizes the posteriors and
consumption for each agent. Agent 1’s ex ante utility is 0.239, whereas agent 2’s is 0.584.

In the third information structure, the agents have the same awareness as in the previous
case but additionally always know the answer to question q. This signal about q is depicted in
Figure 3(a) by the dotted lines. Note that this signal is uninformative in S0, because it does not
contain question q. Conditional Independence given S∗ is violated because at (ah, qy, cn) the
agent’s posterior belief about event (al, qy) is 4/7, whereas if we condition also on the awareness
signal expressed in S∗ it is 0. Intuitively, at (al, qy, cy) the agent is aware of S∗ and can reason
that (ah, qy, cn) is impossible, because it describes that her awareness would be S. However, at
(ah, qy, cn) she is aware of S and cannot reason that (al, qy) is impossible, because this event
happens only when her awareness is strictly higher.

When s∗1 occurs, the agents are unaware of c but can exclude am, as they know the answer to
question q is y. Their posterior on S0 is (3/7, 0, 4/7). They consume their expected endowment,
which is (3/7)1 + (4/7)0 = 3/7 for agent 1 and (3/7)0 + (4/7)1 = 4/7 for agent 2. At s∗2, they
know that the answer to question q is n, which implies that the level of assets is m. Hence, both
agents consume their endowment, which is 0.5. At s∗3, as in the second information structure,
they are fully aware and use their awareness signal to deduce that the level of assets is low.
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(ah,qy,cn) (am,qn,cn) (al,qy,cy)

(ah,qy) (am,qn) (al,qy)

ah am al
S0

S

S*

(a) Signal about q

(ah,qy,cn) (am,qn,cn) (al,qy,cy)
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ah am al
S0

S

S*

(b) Full information

Figure 3: Information structures 3 and 4

Full state Posteriors Agent 1’s Consumption Agent 2’s Consumption

s∗1 (3/7, 0, 4/7) 3/7 4/7
s∗2 (0, 1, 0) 0.5 0.5
s∗3 (0, 0, 1) 0 1

Table 4: Signal about q

As a result, both consume their endowments, 0 and 1, respectively. Table 4 summarizes the
posteriors and consumption for each agent. Agent 1’s ex ante expected utility is 0.246, whereas
2’s is 0.578.

In the fourth information structure, depicted in Figure 3(b), the agents have full informa-
tion, as they are informed of the level of assets before they trade. The signal about a is fully
informative, depicted by the discontinuous lines. Their awareness signal is irrelevant, so we
assume that they are aware only of the level of assets dimension. Therefore, at each state they
consume their endowment. Agent 1’s ex ante expected utility is 0.356, whereas 2’s is 0.431.

Figure 4 depicts the ex ante expected utilities as information increases. The standard model
of Schlee [2001], without unawareness, prescribes that the graphs for both agents should be
(weakly) decreasing. However, with unawareness they move in opposite directions. Going from
no information to an informative awareness signal, they are willing to insure each when the level
of assets is high or medium, not knowing whether a low level of assets has occurred. But when
the level of assets is low, their awareness increases and they are able to deduce that the level of
assets is low. As a result, the risk-sharing opportunity vanishes, benefiting agent 2 who holds
all of the economy’s endowment.

Surprisingly, it is not the case that information is always good for agent 2, even though
she holds all of the economy’s endowment in the state where their awareness increases. If, in
addition to the awareness signal, the agents have access to a signal that reveals the answer
to question q, the roles are reversed: agent 1 becomes better off, whereas agent 2 becomes
worse off. Intuitively, knowing that the level of assets is medium at s∗2 destroys the risk-sharing
opportunity in that state, forcing both agents to consume their endowment. Because agent 1
was mistakenly sacrificing some of her endowment at that state to get higher consumption in
the event that the level of assets was low, she becomes better off as a result, and the exact
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Figure 4: Ex ante utilities as information increases

opposite holds for agent 2.
A similar reasoning explains why moving to full information benefits agent 1 even more,

again at the expense of agent 2. The risk-sharing opportunity of insuring when the level of
assets is high, for the event that the level of assets is low, is destroyed by more information.
However, this is good news for agent 1, because when the level of assets was low, she was not
consuming anything anyway.12

This example shows that in Theorem 1 we need both P 1 and P 2 to satisfy Conditional
Independence for the value of information to be negative for all. In particular, if P 1 is the no
information structure and P 2 is the structure with the awareness signal, then only P 1 satisfies
Conditional Independence and agent 2 becomes strictly better off. If P 1 is information structure
3 and P 2 is information structure 4, then only P 2 satisfies Conditional Independence but agent
1 becomes strictly better off. In Section 3.2 we provide a similar counterexample for the case of
risk neutral agents who insure the risk averse agents fully.

It is noteworthy that, unlike the example of Figure 1, here the full state space S∗ does not
consist of the Cartesian product of all the possible answers for each question. For example, full
states (ah, qy, cy), (ah, qn, cy), (am, qy, cy) and (am, qn, cy) do not belong to S∗, implying that if
the agent is aware of S∗ and knows that there is a housing market crisis, she can deduce that
the level of the assets is low.13 In other words, S∗ contains connections between answers of
different questions, or theorems.

However, these connections are not what drives the violation of Conditional Independence
and hence the positive value of public information. To see this, suppose we enlarge the infor-
mation structure of Figure 3(a), by defining SC to be the Cartesian product of all the possible
answers. State spaces S and S0 are similarly expanded. The agent still receives the signal about
q when she is aware of this dimension, but all states s∗ ∈ SC \S∗ specify that the agent is aware
only of S0 and therefore has no information. Then, even if these extra states have positive prior
probability, Conditional Independence is still violated in the same way as before. For example,
consider a uniform prior on the 12 states of SC . At (ah, qy, cn), the agent’s posterior belief
about event (al, qy) is 1/2, whereas if we condition also on the awareness signal expressed in SC

it is 0. The reason is that at each s∗ ∈ S∗, S0 ≺ Si(s∗) implies that she considers the event

12Note that if we compare no information with full information then awareness is constant, so the ex ante utilities
for both agents decrease, as predicted in Schlee [2001].

13Recall that the formal model of Section 2 only specifies a set of state spaces, not a collection of questions and
answers, hence it allows for such a formulation.
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(SC \ S∗)Si(s∗) to be impossible, because it describes a strictly lower awareness. Therefore,

whether Conditional Independence is satisfied or not does not depend on whether SC \ S∗ is
included in the information structure.

Moreover, Heifetz et al. [2006, 2013] also allow for information structures where the full state
space is not the Cartesian product of all possible answers. However, Proposition 1 shows that
their Projections Preserve Posteriors property implies Conditional Independence. Intuitively,
Projections Preserve Posteriors can be violated in two different ways. The first, described right
after Proposition 1, satisfies Conditional Independence and requires a state space that is not a
Cartesian product, because it exploits the connections betweens answers of different questions.
The second, described here, does not require a Cartesian product but violates Conditional
Independence. On the other hand, the state space in Karni and Vierø [2013] has the form of a
Cartesian product, as it is the set of all functions from acts to consequences.

Finally, note that information structures 2 and 3 are extreme in the sense that the agents
become aware of all three dimensions if and only if al (or, equivalently, cy) occurs. The justi-
fication is that the housing crisis is such a dramatic event that increases the awareness of the
agents. However, a less extreme assumption would be to specify that when an agent becomes
aware of a new dimension, she entertains the possibility that she would have become aware of
it under other circumstances, for example if ah or am (or, equivalently, cn) had occurred.14

This can be modelled by S∗ having six states, the original three plus their copies, so that
(ah, qy, cn)1 specifies that the agents’ awareness is S, whereas (ah, qy, cn)2 specifies that their
awareness is S∗, and similarly for (am, qn, cn)k and (al, qy, cy)k, where k = 1, 2. The other two
state spaces remain the same. It is still possible to provide counterexamples with positive value
of information for some agent, as long as Conditional Independence is violated. In information
structure 2, when the agent is only aware of S she has no other information, hence she considers
all states in S to be possible. Her beliefs about event {al} are not updated and they are equal to
πS({al}S) = πS∗({(al, qy, cy)1, (al, qy, cy)2}). When she is aware of S∗, she knows that the event
“I am aware of S∗”, denoted {(ah, qy, cn)2, (am, qn, cn)2, (al, qy, cy)2}, has occurred. Conditional

Independence is violated if, πS∗({(al, qy, cy)1, (al, qy, cy)2}) 6= πS∗ ((al,qy,cy)2)
πS∗ ({(ah,qy,cn)2,(am,qn,cn)2,(al,qy,cy)2}) .

For instance, if the right hand side is higher, there is positive correlation between being fully
aware and {al} occurring.

3.1.1 Asymmetric awareness

Consider now an example with asymmetric awareness, which shows that it is possible for an
agent to intentionally make some of her awareness and information public, in order to manipulate
the other agent. Agent 2 (hedge fund manager) is aware of all three questions ex ante, whereas
agent 1 is only aware of a. Hence, their awareness signals are uninformative. First, suppose
that both have no signals about the questions, so they will trade and their consumptions will be
identical to those of the first information structure, given in Table 2. Agent 1’s ex ante expected
utility is 0.399, whereas 2’s is 0.474.

Second, suppose that agent 2 is able to acquire signals about q and c, which enables her to
know what is the level of assets at each state. Her information structure is depicted in Figure
5(b). Note that whereas S∗ specifies that 2 is able to distinguish between all states, S only
describes that she knows whether the level of assets is medium or not, because it does not
contain dimension c. Moreover, S0 describes that 2 has no information. Agent 1, who is only
aware of S0, is therefore unaware that agent 2 can know what is the level of assets, because she
is unaware of both q and c.

Agent 2 can increase her ex ante expected utility by making agent 1 aware of (and providing
information about) dimension q and by making agent 1 aware of dimension c only when there

14I thank a referee for pointing this out.
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is a housing crisis and the level of assets is low. In that case, agent 1’s information structure is
depicted in Figure 3(a).

At state s∗1, the public information reveals that the level of assets is either high or medium.
Agent 2 knows that the level of assets is high, but she has no incentive of revealing it, because
her endowment at that state is 0. Agent 1, being unaware of c, thinks that agent 2’s information
is identical to hers. At state s∗2, the public information reveals that the level of assets is medium,
so both agents consume their endowments. At s∗3, agent 2 learns the answer to both q and c and
deduces that the level of assets is low. She makes agent 1 fully aware, who then realizes that
this happens if and only if the level of assets is low. Hence, both consume their endowments.
The consumptions of the agents are identical to the case of information structure 3, given in
Table 4. Agent 1’s ex ante expected utility is 0.246, whereas 2’s is 0.578. Comparing with the
case of no information, agent 2 is strictly better off by intentionally making some of her private
information public and making agent 1 more aware. Moreover, agent 2’s plan is dynamically
consistent, because she has no incentive in the interim stage to reveal more or less information
than what she had planned in the ex ante stage.

(ah,qy,cn) (am,qn,cn) (al,qy,cy)

(ah,qy) (am,qn) (al,qy)

ah am al
S0

S

S*

(a) Signal about q

(ah,qy,cn) (am,qn,cn) (al,qy,cy)

(ah,qy) (am,qn) (al,qy)

ah am al
S0

S

S*

(b) Full awareness and signal about q and c

Figure 5: Asymmetric information structures of agents 1 and 2

3.2 Trading with aggregate uncertainty

We now show that the value of information is strictly positive for a risk averse agent, in the
case where there is aggregate uncertainty and there is a third, risk neutral agent with utility
u(c) = c, who can insure the other two, risk averse agents. The endowments are given in the
following table.

Level of assets Agent 1 Agent 2 Agent 3
ah 1 0 0.8
am 1 0.8 0
al 1.4 1 1

The utilities for the two risk averse agents and the common prior are the same as in the
previous example. We compare the ex ante expected utilities of the three agents, for the first
four information structures described in the previous section.

In the no information case, the posterior of the agents is their prior. The two risk averse
agents insure fully, so c1(s) = 1.16 and c2(s) = 0.64, for each s ∈ S0. Agent 3 is risk neutral

17



and puts all her consumption at state 3, which has the highest probability. Her consumption is
0 at s1,s2 and 1.6 at s3. Agent 1’s ex ante expected utility is 0.823, 2’s is 0.537 and 3’s is 0.64.

In the awareness signal case, the posteriors are the same as in Table 3. The consumption
vectors for the three agents are c1 = {1.16, 1.16, 1.4}, c2 = {0.64, 0.64, 1} and c3 = {0, 0, 1}.
Agent 1’s ex ante expected utility is 0.858, 2’s is 0.622 and 3’s is 0.4.

When the signal about q is available, the posteriors are the same as in Table 4. The consump-
tion vectors for the three agents are c1 = {1.22, 1, 1.4}, c2 = {0.57, 0.8, 1} and c3 = {0, 0, 1}.
Agent 1’s ex ante expected utility is 0.844, 2’s is 0.638 and 3’s is 0.4.

In the full information case, all agents always consume their endowments. Agent 1’s ex ante
expected utility is 0.814, 2’s is 0.492 and 3’s is 0.64. The ex ante utilities are depicted in Figure
6. Note that, unlike the previous example, 1’s and 2’s ex ante utilities do not always move in
opposite directions.
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0.5	

0.6	

0.7	

0.8	

0.9	

1	

No	
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Agent	1	
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Figure 6: Ex ante utilities as information increases

Finally, as with the asymmetric awareness case that we examine in the previous example,
suppose that agents 1 and 3 are unaware and uninformed, as described in Figure 2(a). Then,
a fully aware but uninformed agent 2 will be strictly better off by acquiring information about
q and c, then revealing some of her awareness and information to agents 1 and 3, so that their
information structure is described by Figure 3(a).

A Proofs

Proof of Proposition 1. Fix s ∈ S ∈ S with πS(s) > 0 and event E ⊆ Si(s). We need to show
that πSi(s)(E|P i(s)) = πS(ES |E iS(s) ∩ P i(s)S) = m. If P i(s)S ⊆ E iS(s) then we are done, so

suppose that P i(s)S * E iS(s).

First, we show that if s1 ∈ P i(s)S then Si(s1) � Si(s), P i(s1)S ⊆ P i(s)S and πSi(s1)(E
Si(s1)|P i(s1)) =

m. Generalized Reflexivity and Stationarity imply that P i({s1}Si(s)) = P i(s). Projections

Preserve Ignorance implies that Si(s1) � Si(s) and P i(s1)S ⊆ P i({s1}Si(s))
S = P i(s)S . More-

over, Si(s1) � Si(s) and Projections Preserve Posteriors imply that πSi(s1)(E
Si(s1)|P i(s1)) =

πSi({s1}Si(s))
(ES

i({s1}Si(s))|P i({s1}Si(s))) = πSi(s)(E|P i(s)) = m.

Second, we show that P i(s)S is partitioned by sets of the form E iS(s1) ∩ P i(s1)S , where
s1 ∈ P i(s)S . From the previous paragraph, s1 ∈ P i(s)S implies P i(s1)S ⊆ P i(s)S , therefore
P i(s1)S ∩ E iS(s1) ⊆ P i(s)S . From Generalized Reflexivity, s1 ∈ P i(s1)S ∩ E iS(s1). Suppose s2 ∈
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P i(s1)S∩E iS(s1). Then, Si(s2) = Si(s1), which implies E iS(s1) = E iS(s2), and {s2}Si(s1) ∈ P i(s1).
Moreover, Generalized Reflexivity implies that {s2}Si(s1) ∈ P i(s2). Thus, from Stationarity, it

follows that P i(s2) = P i({s2}Si(s1)) = P i(s1). Hence, P i(s2)S ∩ E iS(s2) = P i(s1)S ∩ E iS(s1).

Define U1 = {t ∈ P i(s)S : @s′ ∈ P i(s)S such that Si(s′) � Si(t)} and, for j > 1, Uj = {t ∈
P i(s)S : @s′ ∈ P i(s)S \ (U1 ∪ . . . ∪ Uj−1) such that Si(s′) � Si(t)}. Let j = 1, . . . , n, where Un
is the last non empty such set. Because S is finite, n is finite as well. We prove the claim using
induction on j.

Let s1 ∈ U1. Suppose s2 ∈ P i(s1)S . Using the previous arguments, Si(s2) � Si(s1).
Because s1 ∈ U1, Si(s2) = Si(s1) and s2 ∈ E iS(s1). Therefore, E iS(s1) ∩ P i(s1)S = P i(s1)S and

πS(ES |E iS(s1) ∩ P i(s1)S) = πSi(s1)(E
Si(s1)|P i(s1)) = m.

Suppose that for all j ≤ k, s1 ∈ Uj implies that πS(ES |E iS(s1)∩P i(s1)S) = πSi(s1)(E
Si(s1)|P i(s1)) =

m. Let j = k + 1 and suppose s1 ∈ Uj . Let s2 ∈ P i(s1)S . From previous arguments,
Si(s2) � Si(s1) and P i(s2)S ⊆ P i(s1)S . Moreover, if Si(s2) � Si(s1) then s2 ∈ Uj for
j < k + 1. We partition P i(s1)S with sets of the form E iS(s2) ∩ P i(s2)S , where s2 ∈ P i(s1)S .
For each element E iS(s2) ∩ P i(s2)S of that partition which is distinct from E iS(s1) ∩ P i(s1)S ,
we have s2 ∈ Uj , for some j ≤ k and from the induction hypothesis we have πS(ES |E iS(s2) ∩
P i(s2)S) = πSi(s2)(E

Si(s2)|P i(s2)) = m. Let B be the union of these elements. Then we have

πS(ES |B) = m, which by Projections Preserve Posteriors implies

πS(ES |E iS(s1) ∩ P i(s1)S) =
πS(ES ∩ E iS(s1) ∩ P i(s1)S)

πS(E iS(s1) ∩ P i(s1)S)
=
πS(ES ∩ P i(s1)S)− πS(ES ∩B)

πS(P i(s1)S)− πS(B)
=

=
m(πS(P i(s1)S)− πS(B))

πS(P i(s1))− πS(B)
= m = πSi(s1)(E|P i(s1)).

Proof of Proposition 2. Let cS,P 1 be the resulting allocation from the equilibrium in economy
(S, P 1, {ωi}i∈I , {ui}i∈I , π) and dS,P 2 the resulting allocation from the equilibrium in economy
(S, P 2, {ωi}i∈I , {ui}i∈I , π). Note that, since P 1 is uninformative, ciS,P 1 is constant conditional
on each payoff relevant state s0 ∈ S0, for each i ∈ I.

For all i ∈ I, for each s0 ∈ S0, from the concavity of ui we have

∑
s∈sS0

πS(s)

πS(sS0 )
ui
(
dis(sS2(s))

)
≤ ui

∑
s∈sS0

πS(s)

πS(sS0 )
dis(sS2(s))

 ,

with strict inequality if ui is strictly concave and diS,P 2 is not constant conditional on s0. If we
take the expectation with respect to all s0 ∈ S0, we have

∑
s0∈S0

πS(sS0 )
∑
s∈sS0

πS(s)

πS(sS0 )
ui
(
dis(sS2(s))

)
≤
∑
s0∈S0

πS(sS0 )ui

∑
s∈sS0

πS(s)

πS(sS0 )
dis(sS2(s))

 =⇒

∑
s∈S

πS(s)ui
(
dis(sS2(s))

)
≤
∑
s0∈S0

πS(sS0 )ui

∑
s∈sS0

πS(s)

πS(sS0 )
dis(sS2(s))

 . (1)

Because P 1 is uninformative given S, the agents’ awareness and their state space is the same
for all s ∈ S. Let S1 be the agents’ state space. Then, for all s ∈ S, P 1(s) = S1. Define
the following allocation gS,P 1 . Because P 1 is uninformative, gis1 = gis2 for all s1, s2 ∈ S, so

we only need to define it for some s ∈ S. For each s0 ∈ S0, for all s1 ∈ sS
1

0 , let gis(s1) =
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∑
s′∈{s1S0

}S
πS(s′)

πS({s1S0
}S)

dis′(s
′
S2(s′)). This allocation specifies that, if s1 ∈ S1 occurs, i will get

the average of what she would get under dS,P 2 , given that the payoff relevant state s1S0
(the

projection of s1 to S0) has occurred. Hence, if s2, s3 ∈ sS0 for some s0 ∈ S0, then gis2(s2S1) =
gis3(s3S1). Because projections commute, we have that, for each s ∈ S, {sS1}S0 = sS0 and

gis(sS1) =
∑

s′∈{sS0
}S

πS(s′)
πS({sS0

}S)
dis′(s

′
S2(s′)), which is equal to the term inside the parenthesis in

the right hand side of inequality (1), for sS0
∈ S0. We can then rewrite (1) as∑

s∈S
πS(s)ui

(
dis(sS2(s))

)
≤
∑
s∈S

πS(s)ui
(
gis(sS1)

)
. (2)

We next show that gS,P 1 is feasible. For each s ∈ S, for all s1 ∈ P 1(s) = S1, we have∑
i∈I

gis(s1) =
∑
i∈I

∑
s′∈{s1S0

}S

πS(s′)
πS({s1S0

}S)
dis′(s

′
S2(s′)) =

=
∑

s′∈{s1S0
}S

πS(s′)
πS({s1S0

}S)

∑
i∈I

dis′(s
′
S2(s′)) ≤

∑
s′∈{s1S0

}S

πS(s′)
πS({s1S0

}S)
ω(s1) = ω(s1).

Since P 1 is uninformative and specifies constant awareness, cS,P 1 is ex ante Pareto efficient.
In particular, it is ex ante Pareto undominated by gS,P 1 , which is feasible and constant condi-
tional on each payoff relevant state s0 ∈ S0. Hence, there exists an agent i such that, for all
s ∈ S,

∑
s1∈S1

πS1
(s1)ui(gis(s1)) ≤ ∑

s1∈S1

πS1
(s1)ui(cis(s1)). Because S � S1 and P 1 is uninforma-

tive given S, we have that for all s2, s3 ∈ S, if s2S1 = s3S1 , then gis2(s2S1) = gis3(s3S1) and
cis2(s2S1) = cis3(s3S1). This implies that we can write the inequality as

∑
s∈S

πS(s)ui(gis(sS1)) ≤∑
s∈S

πS(s)ui(cis(sS1)). Combining this with inequality (2) we have that
∑
s∈S

πS(s)ui
(
dis(sS2(s))

)
≤∑

s∈S
πS(s)ui(cis(sS1)), hence i is weakly worse off ex ante under dS,P 2 than under cS,P 1 . If ui is

strictly concave and diS,P 2 is not constant for all s0 ∈ S0, then she is strictly worse off ex ante.

To provide a graphical explanation of the proof, consider Figure 7. Because P 1 is unin-
formative, P 1(s) = S1 for all s ∈ S, which is the second state space from the top. Agent i’s
consumption at s is cis(sS1). Under P 2, however, different states in S specify different awareness.
State s specifies that her state space is S2(s), which is the third state space from the top, with
consumption dis(sS2(s)). State s′ specifies that her state space is S2(s′), which is the fourth state
space from the top, with consumption dis′(s

′
S2(s′)). The thin arrows show that both s and s′

project to sS0 ∈ S0, which is the bottom state space. Hence, s, s′ ∈ {sS0}S . By taking the aver-

age of the consumption described by dS,P 2 , for all states s′ ∈ {sS0
}S , with weights πS(s′)

πS({sS0
}S)

,

we construct allocation gS,P 1 . Because gS,P 1 is feasible in (S, P 1, {ωi}i∈I , {ui}i∈I , π), Pareto
efficiency of cS,P 1 implies that some i weakly prefers cS,P 1 over gS,P 1 . Concavity of ui implies
that i weakly prefers gS,P 1 over dS,P 2 , hence the result.

Proof of Theorem 1. At state s ∈ S and economy (S, P 1, {ωi}i∈I , {ui}i∈I , π), the agents’ state

space is S1(s) and their posterior about s1 ∈ S1(s) is
πS1(s)(s1)

πS1(s)(P
1(s)) if s1 ∈ P 1(s) and 0 oth-

erwise. Therefore, we are at a standard general equilibrium model under uncertainty. It is a
standard result (we sketch its proof in Section 3) that if all agents are risk averse and there is
no aggregate uncertainty, the only equilibrium allocation is such that each agent i consumes her

expected endowment, which is
∑

s1∈P 1(s)

πS1(s)(s1)

πS1(s)(P
1(s))ω

i(s1), where ωi(s1) is i’s endowment at s1.
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Figure 7: Graphic representation of Proposition 2

In words, take any equilibrium allocation cS,P 1 and consider the allocation which assigns the

expectation
∑

s1∈P 1(s)

πS1(s)(s1)

πS1(s)(P
1(s))c

i
s(s1) to each agent i. This allocation is feasible because of no

aggregate uncertainty and all agents weakly prefer it, because of risk aversion. Moreover, if i’s
consumption is not constant across states in the initial allocation, then she strictly prefers the
new one. Because consumption is constant across states for all agents, equality of the marginal
rates of substitution across states implies that the prices (after normalization) are the posterior
probabilities. Therefore, the only equilibrium allocation is such that each agent consumes her
expected endowment. Similar arguments apply when there is aggregate uncertainty but there
are risk neutral agents who fully insure the risk averse agents. In both cases, agent i’s ex ante
expected utility is ∑

s∈S
πS(s)ui

 ∑
s1∈P 1(s)

πS1(s)(s1)

πS1(s)(P 1(s))
ωi(s1)

 .

Consider the following lemma.

Lemma 1. For any state space S ∈ S, for any possibility correspondence P and the resulting
awareness signal ES,

{
P (s)S ∩ ES(s)

}
s∈S is a partition of S. Moreover, if P 2 is more informa-

tive than P 1 given S ∈ S, then partition
{
P 2(s)S ∩ E2

S(s)
}
s∈S is finer than

{
P 1(s)S ∩ E1

S(s)
}
s∈S.

Proof. From Generalized Reflexivity, s ∈ P (s)S ∩ ES(s). Suppose s1 ∈ P (s)S ∩ ES(s). Then,
S(s) = S(s1) and {s1}S(s) ∈ P (s). Generalized Reflexivity implies {s1}S(s) ∈ P (s1) and
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Stationarity implies P (s1) = P ({s1}S(s)) = P (s). Hence, P (s1)S ∩ ES(s1) = P (s)S ∩ ES(s).

For the second claim, suppose s1 ∈ P 2(s)
S ∩ E2

S(s). Because P 2 is more informative than
P 1 given S, we have s1 ∈ P 1(s)S . Stationarity and Projections Preserve Ignorance imply that
S1(s1) � S1(s). Suppose s1 /∈ E1

S(s). Then, S1(s1) � S1(s), which implies that s /∈ P 1(s1)S .
Because

{
P 2(s)S ∩ E2

S(s)
}
s∈S is a partition, we have P 2(s)S ∩ E2

S(s) = P 2(s1)S ∩ E2
S(s1), so

together with Generalized Reflexivity we have s ∈ P 2(s1)S ⊆ P 1(s1)S , a contradiction.

This lemma says that P1 =
{
P 1(s)S ∩ E1

S(s)
}
s∈S and P2 =

{
P 2(s)S ∩ E2

S(s)
}
s∈S are two

partitions of S, where P2 is finer than P1. Take a partition cell P1(s) = P 1(s)S ∩E1
S(s), for some

s ∈ S. For all states in P1(s), the agent’s awareness is the same. Hence, agent i’s consumption is

constant and it is her expected endowment,
∑

s1∈P 1(s)

πS1(s)(s1)

πS1(s)(P
1(s))ω

i(s1). The expected value of i’s

consumption over the partition cell P1(s) is πS(P 1(s)S ∩ E1
S(s))

( ∑
s1∈P 1(s)

πS1(s)(s1)

πS1(s)(P
1(s))ω

i(s1)

)
.

Conditional Independence implies that for every s ∈ S with πS(s) > 0 and any s1 ∈ P 1(s),

we have that
πS1(s)(s1)

πS1(s)(P
1(s)) =

πS(sS1 ∩E1S(s))

πS(P 1(s)S∩E1S(s))
. Substituting, we have that the expected value

of i’s consumption over P1(s) is
∑

s1∈P 1(s)

πS(sS1 ∩ E1
S(s))ωi(s1). Since ωi(s1) = ωi(s2) for all

s2 ∈ sS1 , the sum becomes
∑

s1∈P 1(s)

∑
s2∈sS1

πS(s2 ∩ E1
S(s))ωi(s2) =

∑
s2∈P 1(s)S

πS(s2 ∩ E1
S(s))ωi(s2) =∑

s2∈P 1(s)S∩E1S(s)

πS(s2 ∩ E1
S(s))ωi(s2) =

∑
s2∈P1(s)

πS(s2)ωi(s2), because, for each s2 ∈ P1(s), either

s2 ∩ E1
S(s) = ∅ or s2 ∩ E1

S(s) = s2.
Using the same arguments as in the previous paragraph, we can show that the expected value

of each agent’s endowment over P2(s) is
∑

s2∈P2(s)

πS(s2)ωi(s2). However, since P2 is finer than P1,

an agent in economy (S, P 2, {ωi}i∈I , {ui}i∈I , π), faces more risk, because her expected endow-
ment is not constant over P1(s), whereas in economy (S, P 1, {ωi}i∈I , {ui}i∈I , π) it is constant.
Hence, given P1(s) and from the concavity of ui she weakly prefers the consumption under econ-
omy (S, P 1, {ωi}i∈I , {ui}i∈I , π) than under economy (S, P 2, {ωi}i∈I , {ui}i∈I , π). Because P1 is a
partition, we can extend the results for all the partition cells in P1 and conclude that each agent
will be ex ante weakly worse off from the consumption in economy (S, P 2, {ωi}i∈I , {ui}i∈I , π).
Moreover, if she is risk averse and her endowment is not constant conditional on each payoff
relevant state, she will be strictly worse off.

To provide a graphical representation of the proof, consider Figure 8. Even though both
P 1 and P 2 describe that awareness varies across states s ∈ S, the common generalized prior
allows us to enlarge P 1(s)S and P 2(s)S to S and work only on that state space. In econ-
omy (S, P 1, {ωi}i∈I , {ui}i∈I , π), when s ∈ S occurs, all agents consider P 1(s) to be possi-
ble, and in Section 3 we show that the unique equilibrium allocation specifies that each agent
consumes her expected endowment given P 1(s). Conditional Independence implies that be-
liefs do not change when we also condition on E1(s), hence the expected endowment does
not change when beliefs are conditioned on P 1(s)S ∩ E1(s). The same arguments apply for
economy (S, P 2, {ωi}i∈I , {ui}i∈I , π). Lemma 1 shows that P1 =

{
P 1(s)S ∩ E1

S(s)
}
s∈S and

P2 =
{
P 2(s)S ∩ E2

S(s)
}
s∈S are two partitions of S, where P2 is finer than P1. In Figure 8,

P1 consists of two cells, the first containing the first four states of S. Partition P2 is finer than
P1 and consists of three cells. This implies that each i’s expected endowment given P 1(s)S∩E1(s)
(for the first four states) is less volatile than i’s expected endowment given P 2(s)S∩E2(s) (for the
first two states) and given P 2(s′′)S∩E2(s′′) (for the next two states). For the last three states the
expected endowment is the same for both economies. From the law of iterated expectations, the
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Figure 8: Graphic representation of Theorem 1

ex ante expected values of the random consumptions for the two economies are equal . Because
ui is concave, each i weakly prefers the consumption under economy (S, P 1, {ωi}i∈I , {ui}i∈I , π)
than under economy (S, P 2, {ωi}i∈I , {ui}i∈I , π).
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